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Transition from persistent to antipersistent correlation in biological systems

Larry S. Liebovitch and Weiming Yang
Center for Complex Systems, Florida Atlantic University, Boca Raton, Florida 33431

~Received 7 April 1997!

Fractal analyses on several noiselike time series from biological experiments reveal transitions from persis-
tent correlation to antipersistent correlation. In this paper, we discuss several simple random walk models
which produce such transitions, and therefore are candidates for the mechanisms that may be present in these
biological systems. These mechanisms are a correlated fractal random walk that is constrained by a threshold
or environmental or inertial forces. We find that persistent correlations for brief time intervals can arise by
inertial movement, while for the long time intervals antipersistent correlations can arise from the fact that the
natural system is bounded. We also estimate the transition point between these two correlation behaviors. The
results agree with the experiment in magnitude.@S1063-651X~97!04710-7#

PACS number~s!: 87.10.1e, 47.53.1n, 05.40.1j
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I. INTRODUCTION

Many noiselike fluctuations are now thought to be frac
time series@1–5#. Since they are generally correlated and
not satisfy Gaussian statistics, they cannot be character
by their moments, since these are not defined for such di
butions. However, they can be characterized by how the v
ance depends on the time over which it is measured@6#. The
parameter that characterizes how the variance depend
time interval is called the ‘‘Hurst coefficient’’; it is related t
fractal dimension, and also provides information about c
relations. When the Hurst coefficientH50.5, then the values
of a time series are uncorrelated with each other. Whe
,H,0.5, then the values of a time series are said to
‘‘antipersistent’’ because increases in the values are m
likely to be followed by subsequent decreases, and v
versa. When 0.5,H,1, then the values of a time series a
said to be ‘‘persistent’’ because increases in the values
more likely to be followed by subsequent increases a
similarly, decreases are more likely to be followed by su
sequent decreases. Because these correlations are fr
they are present over all time scales.

Recently, fractal analysis has been widely used to inv
tigate noiselike fluctuations in biological systems@1–5#. In
this paper, we would like to call attention to a common fe
ture found in the fractal analysis results of several biologi
experiments done by Churillaet al. @1#, Collins and De Luca
@2#, and Treffner and Kelso@3#. Churilla et al. recorded the
voltage difference across the cell membrane of hum
T-lymphocyte cell lines. Collins and De Luca studied t
human postural control system. They measured the time
ries of human postural sway. Treffner and Kelso studied h
normal human adults attempted to balance an aluminum
which could be held at its pivot~at the bottom!, but was
constrained to slide on a one-dimensional track of 180 cm
length. A common result of the above experiments is tha
transition from persistent to antipersistent correlation w
found. Over brief time intervals, the correlation is persist
and the Hurst coefficientH is around 0.8. Over long time
intervals, the correlation is antipersistent, and the Hurst
efficient H is about 0.3.

The coincidence of correlation behavior in these exp
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ments suggests that there may exist some common dyn
cal components in these biological systems which contrib
persistent and antipersistent correlations, respectively.
components which contribute persistent correlation domin
in the brief time interval. For the long time interval, oth
components which contribute antipersistent correlation
come dominant. To discuss dynamical properties of fluct
tions, it is helpful to analyze the system as an analogy o
random walk process, or a Brownian motion. The persist
correlation may arise from inertial movement. Unlike th
ordinary Brownian motion conventionally considered, the
fective mass of the ‘‘particle’’ in a biological system gene
ally cannot be neglected@7#. Inertial movement can be ver
important for brief time intervals in biological system. Th
antipersistent correlation may arise from the fact that
random walk is bounded. In the above experiments, the v
age differences are limited in order to keep the stability
the membrane, the postural sways are limited to a range
erwise that humans cannot stand, and in Treffner’s exp
ment not only is the balancing established in a limited an
range but the track is also of limited length. The bound
system naturally provides an antipersistent correlation for
long time interval.

The paper is organized as follows: in Sec. II we brie
review the theory of fractional Brownian motion and th
method of fractal analysis. We compare three different me
ods of estimating the Hurst coefficient. In Sec. III, we rec
culate the Hurst coefficient for the time series from Chu
la’s experiment by the three methods we discussed in Sec
The motivation is to try to characterize the transition fro
persistent to antipersistent correlation more thoroughly.
Sec. IV, several simple models considering bounded po
tial or inertial movement are considered. The numerical
sults on correlation behavior are compared with the result
Sec. III, and we try to illustrate the effect of different dy
namical components. Theoretical analyses and nume
calculations on the transition point, at which the correlati
changes from persistent to antipersistent, are provided fo
the models we discuss. Discussions and conclusions ar
Sec. V, where we also estimate the relaxation times of in
tial movement for the three experimental systems we m
tioned above.
4557 © 1997 The American Physical Society
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II. FRACTAL ANALYSIS OF TIME SERIES

A. Fractional Brownian motion

By definition, an important property of fractal times seri
is statistical self-similarity. One of the simplest example
ordinary Brownian motion in one dimension. Consider a p
ticle in fluid with massm is driven by uncorrelated random
force h8(t), while a viscous force depending on velocity
also present. We have the Langevin equation.

mẍ52g ẋ1ch8~ t !, ~1!

where2g ẋ is the viscous force andc is the random force
amplitude. The above equation could also be written

ẍ52 ẋ/t1ch~ t !, ~2!

where t5m/g is called the relaxation time andh(t)
5h8(t)/m. If the mass of a particle is very small, such th
the relaxation time goes to zero, Eq.~1! should be written as

ẋ5ch8~ t !/g. ~3!

In this case, the average and the variance of the par
positionx(t) satisfy the relations

^x~ t !2x~ t0!&50, ^@x~ t !2x~ t0!#2&52Dut2t0u ~4!

for any two timest and t0 , whereD is called the diffusion
coefficient. These relations imply that the process is stat
cally self-similar. That is, the shape of the motion over tim
interval t12t0 is proportional to that over intervalt22t0 .
The generalization of the process assumes that the vari
satisfies the following relation withut2t0u:

^@x~ t !2x~ t0!#2&;ut2t0u2H, ~5!

which defines a fractional Brownian motion@6#. H is the
Hurst coefficient which satisfies 0,H,1. The ordinary
Brownian motion corresponds to the special caseH5 1

2 ,
where the values of the time series are uncorrelated w
each other. WhenHÞ 1

2 , the process is properly fractiona
and has an infinitely long-run correlation. More specifical
when H, 1

2 , an increasing trend in the past implies a d
creasing trend in the future, and a decreasing trend in the
implies an increasing trend in the future. Such a correlat
is antipersistent. WhenH. 1

2 , we have a persistent correla
tion. In this case, an increasing trend in the past implies
increase trend in the future, Conversely a decreasing tren
the past implies, on the average, a continued decrease i
future.

Many people believe that the fractal time series can
analyzed using a framework of fractional Brownian motio
or at least the methods applied to fractional Brownian mot
could also be used to characterize some key propertie
fractal time series. To develop the tool of analyzing fra
tional Brownian motion, the first step is to implement t
fractional Brownian motion with a computer.

Two computer simulation methods are generally used
generate a fractional Brownian motion. One was develo
by Mandelbrot and Wallis@8#, which divides each intege
time step inton steps for the purpose of approximating t
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integral and defines the increments of a discrete fractio
Brown motion with 0,H,1 as

BH~ t !2BH~ t21!5
1

G~H11/2! (
i 5n~ t2M !

nt

KS t2
i

nDn21/2j i ,

~6!

where the kernelK is defined by

K~ t2t8!5 H ~ t2t8!H21/2,
~ t2t8!H21/22~2t8!H21/2,

0<t8<t
t8,0, ~7!

and $j i% is a set of Gaussian random variables with u
variance and zero mean. Another method was introduced
Voss @9#, which he called successive random addition. T
starting point is a sequence of position
X(t1),X(t2),...,X(tN) at timest1 ,...,tN . We chooseN53 at
t i50, 1

2 , and 1, and set positions equal to zero. Next,
positionsX(t1), X(t2), and X(t3) are given random addi
tions chosen from a Gaussian distribution with zero me
and unit variance. The midpoints of time intervals beco
additional times at which the positions are estimated by
terpolation. Then all positions are given a random addit
with zero mean and a reduced variances2

25 1
2

2H. After n
applications of this algorithm we defined the position of t
fractional Brownian motion at (112n) times. The positions
are obtained by the interpolation and random addition p
cess. The variance of the addition in thenth generation of
this process issn

25 1
2

2Hn. Then, introducing a transformatio
on timet→t852nt and on positionX→X8522HnX, we ob-
tain a time series of fractional Brownian motion fort i from 0
to 2n11.

The second method is much more efficient for getting
long fractional Brownian motion time series. Thus, in th
paper, most of the simulations used the series created by
second method.

B. Rescaled range analysis

In 1951, Hurst introduced rescaled range analysis to st
time correlations in annual discharges of the Nile River@10#.
That method is well suited for studying the correlation
fractal time series. Consider an increment series$xi% of a
fractional Brownian motion. We divide it intoN(T) adjacent
segments, each ofT points. To perform the rescaled rang
analysis requires that we compute a quantity calledR/S for
eachT. For eliminating possible trend influence, the mean
the nth segment of lengthT is first computed:

^x&n,T5
1

T (
i 5~n21!T11

nT

xi . ~8!

The standard deviationSn,T of thenth segment of lengthT is
defined as

Sn,T5F S 1

TD (
i 5~n21!T11

nT

~xi2^x&n,T!2G1/2

. ~9!

For each pointi in the time series, we compute
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yi ,n,T5 (
k5~n21!T11

i

~xk2^x&n,T! ~10!

for (n21)T11< i<nT. The rangeRn,T in thenth segment
is then computed by subtracting the least value ofyi ,n,T from
the greatest value ofyi ,n,T . We divide the range by the stan
dard deviation to determine the rescaled range, and defin
average rescaled range

~R/S!T5
1

N~T! (
n51

N~T!

~Rn,T!/~Sn,T!. ~11!

We calculate the rescaled ranges for different time dura
T, and the logarithm of (R/S)T is plotted versus the loga
rithm of T. The slope of this plot isH, the Hurst coefficient.

To test the method and our computer program quan
tively, we first generated some time series of fractio
Brownian motion with a givenH by the kernel integral
method and by the successive random addition method,
computed the Hurst coefficients and compared them with
predefined value. The result is shown in Fig. 1. For the r
caled range analysis, the Hurst coefficient is overestima
whenH,0.7, and underestimated whenH.0.7.

C. Variance analysis

In the variance analysis method we directly calculate
variance of incrementsV(t2t0), and determine how the
variance diverges with time. Consider a time series of fra
Brownian motionX(t), the variance of increments is give
by

V~ t2t0!5^@X~ t !2X~ t0!2^X~ t !2X~ t0!&#2&

5^@X~ t !2X~ t0!#2&2^X~ t !2X~ t0!&2, ~12!

which by definition diverges with time as

V~ t2t0!;ut2t0u2H. ~13!

Numerical results show the Hurst coefficients determin
by this method are the closest to the predefinedH ~Fig. 1!.
However, since our testing sequences are much more a
rately fractal than real data, some unexpected influences
be introduced when we analyze the real experimental d

FIG. 1. Estimated Hurst coefficientsH8 with rescaled range
analysis method~D!, variance analysis method~1!, and zero-
crossing analysis method~L! for fractional Brownian motion time
series created with successive random addition method for giveH.
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The important point is that the analysis directly considers
variance quantity, which is one of the most important pro
erties in the stochastic process and connected with m
other physical measurables. Whatever the accuracy of
estimatedH is, the dependence of the variance on the ti
interval provides important information about the process

D. Zero-crossing analysis

Generally speaking, the time series$Xn% from experiment
are some scalar observableXn5h(Yn), in which Yn are un-
derlying high-dimensional variables. So it is important
introduce methods which directly extract the information
fractal properties from time series. Hereafter we develo
method that uses the zero-crossing property of a fractio
Brownian motion.

According to Ref.@11#, the distributionP(T) of the first
return time T for a fraction Brownian motion satisfies
power law

P~T!;TH22, ~14!

where H is the Hurst coefficient. The first return time
defined by the event

X~0!5X~T!5x0 , X~ t !,x0 for 0,t,T

or, symmetrically,

X~0!5X~T!5x0 , X~ t !.x0 for 0,t,T

The discrete versions of the above event are

X~0!5x0 , X~1!,x0 , X~2!,x0 ,...,

X~T!,x0 and X~T11!>x0

or

X~0!5x0 , X~1!.x0 , X~2!.x0 ,...,

X~T!.x0 and X~T11!<x0 .

By the embedding theorem of a dynamical system, we
derive that the distribution of zero crossing is invariant fo
generic scalar functionh.

Some details of the above analysis should be conside
when we proceed to use the zero-crossing analysis. The
is that the finite length of the time series may cause
statistics of the long return times to be characterized w
low accuracy. The second is that a power law is establis
on a continuous motion. The discrete sampling may mis
lot of return events. It will affect the statistics especially f
short return times. Hence only the statistics for a medi
range of return times is reliable. More specifically, if th
sample length isN, the statistics of the return times betwee
10 andN/10 are thought to be the most reliable.

Our numerical test results on the fractional Brownian m
tion with givenH are shown in Fig. 1. The length of the tim
series is 8192. We measured the sloped of the distribution
on a log-log plot betweenT510 and 1000. The Hurst coef
ficient measured isd12. The values estimated forH by this
method were less accurate than those determined by
other methods. The main reason is that the length of the t
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series is too short. We also analyzed time series of length
to 32 769. For this longer time series, the estimated value
zero-crossing analysis are better than ones given by the
caled range analysis, but worse than ones given by the v
ance analysis. The values computed from these three m
ods underestimate the value ofH when H is near 1. This
error is reduced for the variance analysis and the ze
crossing analysis as the length of the time series increas

The results in Fig. 1 show the comparison of the differe
methods. The further evaluations of the methods are imp
tant and complicated@12#. Here we want to note that, sinc
our test sequences are accurate fractional Brownian moti
we are not certain that we would find the same results w
applying these methods to real experimental data. We th
that each of these methods may provide a different poin
view on the fractal time series. In the following, we will us
all three methods to analyze the time series and com
them with the simulating results from the models. Here
would like to note that the zero-crossing analysis needs r
tively longer time series to ensure the reliability of its stat
tics. Although the zero-crossing analysis is invariant unde
coordinate transformation, we still use it as a reference
while the other two methods are more prominent in our d
cussion, since the experimental time series are generally
tively short.

III. TRANSITION FROM PERSISTENT
TO ANTIPERSISTENT

Fractal analysis now has been applied to characte
many time series from biological systems. It is found tha
unique Hurst coefficient could not be defined for the en
process. Generally, for the short time interval, the slope
different analyses all suggest that the Hurst coefficien
larger than 0.5, while, for the longer time interval, the slop
suggest that the coefficient is smaller than 0.5. A Hurst
efficient larger than 0.5 means a persistent behavior, wh
carries out a superdiffusion which is faster than a norm
random walk; and, conversely, a Hurst coefficient sma
than 0.5 means a antipersistent behavior, which carries
an abnormal diffusion which is slower than a normal rand
walk. Since it is a common property of many biological sy
tems, we think the mechanism of the transition from pers
tent to antipersistent correlation could be derived from
property of a dynamical system.

First, we would like to detail the description of the tra
sition by using the analysis methods mentioned in Sec. II.
a typical example, we choose data from Churillaet al.’s ex-
periment@1#, which is a measure of the voltage across
cell membrane of humanT-lymphocyte cell line by the
whole cell patch clamp technique. The time series consis
of 8192 points sampled at 100 points/s. Since the slope
ies for different time intervals, we calculated the local slo
and converted it to the corresponding Hurst coefficient fo
certain time interval. The result is shown in Fig. 2.

By rescaled range analysis, for a time interval sma
than 1 s, the values ofH are between 0.65 and 0.90. For tim
intervals larger than 10 s, the values ofH are around 0.2. The
transition point, at which the value ofH hits 0.5, is about
4.2 s. Variance analysis presents a slightly different pictu
The values ofH, beginning from 0.83 for the shortest tim
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interval we have~0.02 s!, decrease to around 0 at a tim
interval of around 5 s. Different from the result of a rescal
range analysis,H is 0.34 for the time interval is 1 s. Th
transition point from persistent to antipersistent correlation
about 0.45 s, which is about one decade smaller than the
in the rescaled range analysis. The effective analyzing in
val range for zero-crossing analysis is 0.1–10 s. The com
tation result shows the values ofH are an average 1 for time
interval from 0.1 to 1 s and an average 0.4 for a time interv
from 1 to 10 s. The transition point is around 1 s.

We also did the same analyses on other data from Chu
et al.’s experiment, and the data from Treffner and Kelso
experiment@3#. A similar behavior was observed. The abs
lute value ofH fluctuated while the feature of a transitio
from persistent to antipersistent correlation remained. T
transition point obtained from the variance analysis was
decade smaller than the one obtained from the result of
rescaled range analysis.

IV. MODELS

A. Bounded correlated random walk

The motivation of our work is to find some simple dy
namical models which could illustrate the transition fro
persistent to antipersistent correlation. There are several
sible ways to implement the transition. We first considere
constrained persistent random walk model. Because the
logical system is naturally a bounded system, the time se
we measured from a biological system carries this prope
and we could introduce limitationsXmax and Xmin in our
model. When the particle moves to the boundary of limi
tion, it is bounced back as if there is a mirror at the boun
ary. Our first model considered a fractional Brownian moti
with mirrors atX52M /2 andM /2. In practice, we first cre-
ated a time series of a free fractional Brownian motion, a
then introduced a mirror transformation

X~ t !→X8~ t !5H M2X~ t !,
X~ t !,
2M2X~ t !,

X~ t !.M /2
2M /2<X~ t !<M /2
X~ t !,2M /2.

~15!

We did the transformations on the time series many tim
until all values ofX(t) were between2M /2 andM /2. Figure
3 shows the fractal analysis result for transformed time se
of fractional Brownian motion withH50.75 andM5100.

The results do show a transition from persistent to a
persistent correlation. The transition point from the varian
analysis is also one decade smaller than the ones from
rescaled range analysis. However, the transitions are sha
than those found from the experiment. After the transitio
instead of the value ofH about 0.2 in the results of fracta
analysis on experimental data, the rescaled range and
increment variance of the model’s output correspond toH
50.

The transition point from persistent to antipersistent co
be derived by the following argument: When the partic
does not hit the boundaries, the motion of the particle ma
tains a persistent behavior. The free-moving time betw
the boundaries determines the magnitude of the transi
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FIG. 2. Results of fractal analyses on the time series of caseC in Churilla et al.’s experiment@1#. ~a! The rescaled rangeR/S vs the time
interval t in a double logarithm coordinate.~b! The coefficientH of the local slope in~a! vs the time intervalt. ~c! The variance of incremen
V(t) vs the time intervalt in a double logarithm coordinate.~d! The coefficientH derived from the local slope in~c! vs the time intervalt.
~e! Distribution P(t) of the first return timet in a double logarithm coordinate.~f! The coefficientH derived from the local slope in~e! vs
the time intervalt which is between 0.1 and 10 s.
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point. Suppose the diffusion coefficient of a primary rando
walk is D; we will have a transition point at approximatel

Tc5Cm~M /D !1/H, ~16!

whereH is the Hurst coefficient, andCm is a constant for a
given H. Figure 4 shows the numerical result of the tran
tion point for differentM /D when the Hurst coefficient is
0.75. The slopes of both lines are4

3 . For the rescaled rang
analysis, the value ofCm is about 0.55, while, for the vari
ance analysis,Cm is 0.09. We also calculatedCm for differ-
ent Hurst coefficients. It seemsCm is independent ofH in
this case.

The mirror approximation shows that introducing a co
straint on random motion does cause an antipersistent c
lation, as we expected. However, the antipersistent corr
tion in this model is stronger than we have seen in
-

-
re-
a-
e

experiment. We believe that the reason for this differen
between experiment and our mirror approximated c
strained model is that the mirror’s bouncing back virtua
introduces an infinitely strong force at the boundary, wh
does not really exist. To overcome the disagreement betw
model and experiment, one obvious way is to conside
softer constrained force, e.g., an elastic recovering force,
ing on the particle associated with the stochastic force.

To do this, we need to solve the differential equation
motion with a stochastic force which is represented by fr
tional Brownian noise. We put fractal Brownian noisej in
Eq. ~3! instead of ordinary random noise. When we sol
that equation numerically, we use the increment of a fr
tional Brownian motion instead of a random number chos
from a Gaussian distribution for each integral step. The o
put of x will be a fractional Brownian motion with sam
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FIG. 3. Results of fractal analyses on the time series of model~15! for H50.75,M5100, andD51. ~a! The rescaled rangeR/S vs the
time intervalt in a double logarithm coordinate.~b! The coefficientH derived from the local slope in~a! vs the time intervalt. ~c! The
variance of incrementV(t) vs the time intervalt in a double logarithm coordinate.~d! The coefficientH derived from the local slope in~c!
vs the time intervalt. ~e! DistributionP(t) of the first return timet in a double logarithm coordinate.~f! The coefficientH derived from the
local slope in~e! vs the time intervalt, which is between 10 and 1000 unit times.
rce

to
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FIG. 4. The transition timeTc by the rescaled range analys
~L! and the variance analysis~D! for differentM /D in model~15!.
Here H50.75. The equations of the straight lines in figure areTc

50.55(M /D)4/3 andTc50.09(M /D)4/3.
Hurst coefficient. Next we can add in a elastic recover fo
2kx in Eq. ~3!, to obtain

ẋ52kx/g1cj8~ t !/g. ~17!

The random forcej8(t) is a fractional Brownian noise.
More specifically, we used a first-order integral method

solve Eq.~17!. The key point is assuming that the output
equationẋ5j8(t) is a perfect fractional Brownian motion
then

E
t

t1h

j8~ t !dt5hHY, ~18!

whereY is chosen progressively from a series of the inc
ments of a fractional Brownian motion with unit varianc
and zero mean. Thus we have
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FIG. 5. Results of fractal analyses on the time series of model~17! for H50.75,k/g50.06, andc/g51. ~a! The rescaled rangeR/S vs
the time intervalt in a double logarithm coordinate.~b! The coefficientH derived from the local slope in~a! vs the time intervalt. ~c! The
variance of incrementV(t) vs the time intervalt in a double logarithm coordinate.~d! The coefficientH derived from the local slope in~c!
vs the time intervalt. ~e! DistributionP(t) of the first return timet in a double logarithm coordinate.~f! The coefficientH derived from the
local slope in~e! vs the time intervalt, which is between 10 and 1000 unit times.
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x~ t1dt !2x~ t !52kxdt/g1c~dt !HY/g. ~19!

The result of the fractal analysis for output time ser
from Eq.~17! is shown in Fig. 5. The Hurst coefficient of th
fractional Brownian noise is chosen to be 0.75. The visc
coefficient g is 1, the elastic parameterk is 0.06, and the
random force amplitude is 1.

The rescaled range analysis of this process present
most the same behavior as that of the experiment. For l
time intervals, the Hurst coefficient goes around 0.3. T
only disagreement between the results of the experiment
the model comes from the variance analysis. The transi
from persistent to antipersistent correlation seems still to
sharper than the one we have seen in results on experi
data. We also tried a softer force, i.e.,F52kuxu1/2. The
results are not qualitatively different. The transition is s
s

s

al-
g

e
nd
n
e

ent

l

sharper than that in the result on experimental data with
variance analysis.

Another conclusion from the assumption thatẋ5j8(t) is
that for the output, a perfect fractional Brownian motio
under the transformationt→t85at, the random force term
is statistically transformed underj8(t)→j8(t8)5j8(at)
5aH21j8(t). This result is important when we discuss th
transition point of model~17!. Under the transformations
t→t85gk21t and x→x85cgH21k2Hx, Eq. ~17! is scaled
to a equation without parameters. That implies a statist
similarity among the systems with different parameters, a
the transition pointTc satisfies

Tc5Ceg/k, ~20!

whereCe is a constant for a givenH. The numerical result of
the transition points is shown in Fig. 6. In Fig. 6~a!, we
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calculate the transition points of model~17! for different
k/g, while the Hurst coefficient of the fractional Brownia
noise is 0.75. The slopes of the line in the figure are b
21. Ce is about 7.3 for the result of rescaled range analy
and about 0.8 for the result of variance analysis. Numer
exploration using different Hurst coefficients@Fig. 6~b!#
shows that the value ofCe does depend on the value ofH
with Ce}aH. The equations of the two lines are exp(1.
14H) and exp(0.4212.6H), respectively, which imply tha
a is about 55 for the result of rescaled range analysis,
about 13 for the result of variance analysis.

B. Fractional Brownian motion with long relaxation time

Now we consider the problem from another side. We
sume the underlying process is an antipersistent fractio
Brownian motion, while other physical properties of the sy
tem contribute persistent behavior for brief time intervals

The simplest consideration is the inertial movement of
particle. Unlike the Brownian particle in fluid, the effectiv
mass in a biological system may not be ignored in our
servation time scale. This means that the relaxation time
the inertial movement, which equalsm/g, is comparable
with the observation time scale, and thus the inertial mo
ment will be observed in the biological experiment. Iner
always tries to keep the particle moving in the same dir
tion, or, in other words, the inertial movement is a persist
movement. Thus we can expect that a persistent correla
could exist, at least when the time interval is smaller than
relaxation time of the inertial movement. To supply the d
tail, we still need numerical simulations of the equation
motion. In this case, the stochastic differential equat
should derive from the Langevin equation. Changing the r
dom forceh(t) by fractional Brownian noisej(t) in Eq. ~2!,
we obtain

ẍ52 ẋ/t1cj~ t !. ~21!

We apply a first-order integral method, similar to th
used in Sec. III to solve the equation numerically:

FIG. 6. ~a! The transition timeTc by the rescaled range analys
~L! and the variance analysis~D! for different k/g in model ~17!
whenH50.75. The equations of the straight lines in the figure
Tc57.3/k andTc50.8/k. ~b! The transition timeTc by the rescaled
range analysis~L! and the variance analysis~D! for different H in
model ~17! whenk/g50.06. The equations of the straight lines
figure areTc5e1.7314H andTc5e0.4212.6H.
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x~ t1dt !2x~ t !5 ẋ~ t !dt,

ẋ~ t1dt !2 ẋ~ t !52 ẋ~ t !dt/t1c~dt !HY. ~22!

The fractal analysis result of the output time series whenH
50.25,t510 andc51 is shown in Fig. 7.

This result seems to be the most similar to that of exp
mental data. The transition in the variance analysis is
smooth as we have seen in experiment. This suggests tha
persistent correlations in experiment are provided by so
kind of inertial movements.

Now we consider the relation between the transition po
and system parameter in our model. The transforma
t→t85tt andx→x85ctH11 could scale out all parameter
in Eq. ~21!. Hence the statistical similar property implies th
we have

Tc5Cit, ~23!

whereCi is a constant for a givenH. The numerical result of
transition point for differentk andH50.25 is shown in Fig.
8~a!. The slopes of the line in the figure are both 1.Ci'36
for the result of the rescaled range analysis, andCi'3.5 for
the result of the variance analysis.Ci also depends on the
Hurst coefficient in this case. Numerical simulations on d
ferent fractional Brownian noises show thatCi}bH, which
are shown in Fig. 8~b!. The equations of the two lines ar
exp(5.212.08H) and exp(2.5614.15H), which imply thatb
is about 8 for the rescaled range analysis, and is about 64
the variance analysis.

V. CONCLUSIONS AND DISCUSSIONS

We studied how the pattern seen in the experimental d
of biological systems, that is persistent at short time interv
and antipersistent at long time intervals, could arise fr
dynamical systems. We find that the pattern in the data co
be due to either~1! a persistent correlated random walk (H
. 1

2 ) that is bounded by a sharp threshold or a softer forc
long times (H, 1

2 ), or ~2! an antipersistent correlated walk
long time intervals (H, 1

2 ) strongly driven by inertial term
(H. 1

2 ) at short times.
Considering that time series in real systems cannot re

infinity and are generally constrained in some definite ran
the bounded walk model is quite reasonable. Numer
simulation verifies that the bounded walk presents an a
persistent correlation for the long time intervals. However
detailed comparison of our fractal analysis between t
simple model and the experimental data shows that there
some differences in transition behavior. For the bound
walk with a mirror approximation, the antipersistent corre
tion is stronger than what we have seen in experiment.
value of H is too low (;0), for models with an elastica
recover force and an even softer force (;uxu1/2). The transi-
tion from largeH to low H is not as smooth at present in th
variance analysis of the data. We also numerically inve
gated a model which considers inertial force and elast
recover force simultaneously. We also are struck by the
that the transition from persistent to antipersistent correla
is quicker than we expected. We think that the constrain
phenomena in biological systems may not be illustrated
any form of recovering force. A possible explanation is th

e
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FIG. 7. Results of fractal analyses on the time series of model~21! for H50.25,t510, andc51. ~a! The rescaled rangeR/S vs the time
interval t in a double logarithm coordinate.~b! The coefficientH derived from the local slope in~a! vs the time intervalt. ~c! The variance
of incrementV(t) vs the time intervalt in a double logarithm coordinate.~d! The coefficientH derived from the local slope in~c! vs the time
interval t. ~e! Distribution P(t) of the first return timet in a double logarithm coordinate.~f! The coefficientH derived from the local slope
in ~e! vs the time intervalt, which is between 10 and 1000 unit times.
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since there exist many meta steady states in biological
tems, the walk is an analogy of a random walk in a rand
environment. Sinai@13# found that a random environmen
actually constrains the random walk. For the particu
model he discussed it is found that inn steps the particle
cannot go farther than (lnn)2. This result corresponds to tha
the slope ofR/S is 2/lnn. For n.55, the correlation be-
comes antipersistent. We will discuss this consideration
ther in a future paper@14#.

To compare the fractal analysis result between model
experiment, the value of the transition point is the most i
portant quantity when we discuss the transition from antip
sistent correlation to persistent correlation. The critical r
son is that the value of the transition point is strong
connected with the physical parameters, as we discusse
Sec. IV. We derived that the transition point for the mod
considering the inertial movement depends linearly on
s-

r

r-

d
-
r-
-

in
l
e

FIG. 8. ~a! The transition timeTc by the rescaled range analys
~L! and the variance analysis~D! for different t in model ~21!
whenH50.25. The equations of the straight lines in figure areTc

536t and Tc53.5t. ~b! The transition timeTc by the rescaled
range analysis~L! and the variance analysis~D! for different H in
model~21! whent510. The equations of the straight lines in figu
areTc5e5.212.08H andTc5e2.5614.15H.
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relaxation timet. For systems similar to Churillaet al.’s
experiment, it is found that the time scale for changes
voltage in the cell is around 100 ms@15#. We assume this
time scale is of the same magnitude as the relaxation tim
the process. Since the transition point from a variance an
sis is about 3.5t, and that from a rescaled range analysis
about 36t, the predicted transition points are consistent w
what we found in Sec. III. The postural sway system a
Treffner’s system are relatively more complicated. We
sume the human reaction time is the relaxation time of th
two systems, such that the transition point as a resul
variance analysis should be around 0.8 s, which is in ag
ment with the experiment in magnitude. Hence we conclu
that persistent correlations in experiment are due to the i
tial movement.

Another important phenomenon we found in our work
that, when we employ different fractal analysis methods
the same time series, the transition points from the persis
correlation to the antipersistent correlation are different. T
implies that different methods present different results
correlation, and most likely reveal different kinds of corre
tions. When we investigate the correlation properties o
time series, it is important to apply several different frac
analysis methods in order to characterize the fractal pro
ties more thoroughly. From the theoretical point of vie
:
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there are two interesting questions waiting for answers. T
first one is why the transition points are different. Our n
merical results show the transition point in a rescaled ra
analysis are always 6–14 times larger than one we obta
in a variance analysis. The second question concerns the
pendence onH of Ce and Ci , which is connected with a
specific model. It includes why it is an exponential depe
dence, and whya and b in our two models show opposit
trends on different transition points as a result of varian
analysis and rescaled range analysis, recalling thata in the
variance analysis is four times larger than it is in the resca
range analysis, whileb in the rescaled range analysis is eig
times larger thanb in the variance analysis. For the model
fractional Brownian motion with elastic recovery force,H is
considered to be larger than 0.5, while for the model of fr
tional Brownian with inertial force,H is supposed to be
smaller than 0.5. The difference in the transition point
different fractal analysis methods will be the smallest wh
H50.5.

ACKNOWLEDGMENTS

This work was supported in part by NIH Grant No
EY6234. The authors thank Dr. M. Ding and Dr. A. T
Todorov for helpful discussions.
s

d.
@1# A. M. Churilla, Ann. Biomed. Eng.24, 99 ~1996!.
@2# J. J. Collins and C. J. De Luca, Phys. Rev. Lett.73, 764

~1994!.
@3# P. Treffner and S. Kelso,in Studies in Perceptions and Action

Proceedings of the International Conference on Percept
and Action,edited by B. G. Bardy, R. J. Bootsma, and Y
Guiard ~Erlbaum, Mahwah, NJ, 1995!.

@4# I. Giaever and C. R. Keese, Physica D38, 128 ~1989!; R. B.
King and S. A. Roger, Circ. Res.65, 578 ~1989!; C. K. Peng
et al., Nature~London! 356, 168~1992!; B. Hoop, H. Kazemi,
and L. Liebovitch, CHAOS3, 27 ~1993!; C. K. Penget al.,
Phys. Rev. Lett.70, 1343~1993!; R. A. Nogueiraet al., Braz.
J. Med. Biol. Res.28, 491 ~1995!; J. B. Bassingthwaighte an
B. Hoopet al., CHAOS5, 609 ~1995!; J. M. Hausdorffet al.,
J. Appl. Physiol.80, 1448~1996!.

@5# J. B. Bassingthwaighte, L. S. Liebovitch, and B. J. West,Frac-
tal Physiology~Oxford, New York, 1994!.
n

@6# J. Feder,Fractals ~Plenum, New York, 1988!.
@7# C. C. Chow and J. J. Collins, Phys. Rev. E52, 907 ~1995!.
@8# B. B. Mandelbrot and J. R. Wallis, Water Resour. Res.5, 228

~1969!; 5, 242 ~1969!; 5, 260 ~1969!.
@9# R. F. Voss, inFundamental Algorithms in Computer Graphic,

edited by R. A. Earnshaw~Springer-Verlag, Berlin, 1985!.
@10# H. E. Hurst, Trans. Am. Soc. Civ. Eng.116, 770~1951!; H. E.

Hurstet al., Long-Term Storage: An Experimental Study~Con-
stable, London, 1965!.

@11# M. Ding and W. Yang, Phys. Rev. E52, 207 ~1995!.
@12# J. B. Bassingthwaighte and G. M. Raymond, Ann. Biome

Eng.22, 432 ~1994!; 23, 491 ~1995!.
@13# Ya. G. Sinai, Theor. Probab. Appl.27, 256 ~1982!.
@14# L. S. Liebovitch and W. Yang~unpublished!.
@15# R. Benz, O. Fro¨hlich, P. Läuger, and M. Montal, Biochim.
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