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Transition from persistent to antipersistent correlation in biological systems
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Fractal analyses on several noiselike time series from biological experiments reveal transitions from persis-
tent correlation to antipersistent correlation. In this paper, we discuss several simple random walk models
which produce such transitions, and therefore are candidates for the mechanisms that may be present in these
biological systems. These mechanisms are a correlated fractal random walk that is constrained by a threshold
or environmental or inertial forces. We find that persistent correlations for brief time intervals can arise by
inertial movement, while for the long time intervals antipersistent correlations can arise from the fact that the
natural system is bounded. We also estimate the transition point between these two correlation behaviors. The
results agree with the experiment in magnitu&1063-651X97)04710-1

PACS numbdrs): 87.10+€, 47.53+n, 05.40+j

I. INTRODUCTION ments suggests that there may exist some common dynami-
cal components in these biological systems which contribute
Many noiselike fluctuations are now thought to be fractalpersistent and antipersistent correlations, respectively. The
time seried1-5]. Since they are generally correlated and docomponents which contribute persistent correlation dominate
not satisfy Gaussian statistics, they cannot be characterizéd the brief time interval. For the long time interval, other
by their moments, since these are not defined for such distreomponents which contribute antipersistent correlation be-
butions. However, they can be characterized by how the varieome dominant. To discuss dynamical properties of fluctua-
ance depends on the time over which it is meas{i8dThe tions, it is helpful to analyze the system as an analogy of a
parameter that characterizes how the variance depends eandom walk process, or a Brownian motion. The persistent
time interval is called the “Hurst coefficient”; it is related to correlation may arise from inertial movement. Unlike the
fractal dimension, and also provides information about corordinary Brownian motion conventionally considered, the ef-
relations. When the Hurst coefficieHt=0.5, then the values fective mass of the “particle” in a biological system gener-
of a time series are uncorrelated with each other. When @lly cannot be neglecteld]. Inertial movement can be very
<H<0.5, then the values of a time series are said to bémportant for brief time intervals in biological system. The
“antipersistent” because increases in the values are morantipersistent correlation may arise from the fact that the
likely to be followed by subsequent decreases, and viceandom walk is bounded. In the above experiments, the volt-
versa. When 0.8 H<1, then the values of a time series are age differences are limited in order to keep the stability of
said to be “persistent” because increases in the values argde membrane, the postural sways are limited to a range oth-
more likely to be followed by subsequent increases anderwise that humans cannot stand, and in Treffner’'s experi-
similarly, decreases are more likely to be followed by sub-ment not only is the balancing established in a limited angle
sequent decreases. Because these correlations are fractahge but the track is also of limited length. The bounded

they are present over all time scales. system naturally provides an antipersistent correlation for the
Recently, fractal analysis has been widely used to inveslong time interval.
tigate noiselike fluctuations in biological systefis-5]. In The paper is organized as follows: in Sec. Il we briefly

this paper, we would like to call attention to a common fea-review the theory of fractional Brownian motion and the
ture found in the fractal analysis results of several biologicaimethod of fractal analysis. We compare three different meth-
experiments done by Churillet al.[1], Collins and De Luca ods of estimating the Hurst coefficient. In Sec. Ill, we recal-
[2], and Treffner and Kels@3]. Churilla et al. recorded the culate the Hurst coefficient for the time series from Churil-
voltage difference across the cell membrane of humara’s experiment by the three methods we discussed in Sec. Il.
T-lymphocyte cell lines. Collins and De Luca studied the The motivation is to try to characterize the transition from
human postural control system. They measured the time s@ersistent to antipersistent correlation more thoroughly. In
ries of human postural sway. Treffner and Kelso studied howSec. 1V, several simple models considering bounded poten-
normal human adults attempted to balance an aluminum rotlal or inertial movement are considered. The numerical re-
which could be held at its pivotat the bottomy but was  sults on correlation behavior are compared with the results in
constrained to slide on a one-dimensional track of 180 cm irSec. lll, and we try to illustrate the effect of different dy-
length. A common result of the above experiments is that aamical components. Theoretical analyses and numerical
transition from persistent to antipersistent correlation wasalculations on the transition point, at which the correlation
found. Over brief time intervals, the correlation is persistentchanges from persistent to antipersistent, are provided for all
and the Hurst coefficientl is around 0.8. Over long time the models we discuss. Discussions and conclusions are in
intervals, the correlation is antipersistent, and the Hurst coSec. V, where we also estimate the relaxation times of iner-
efficientH is about 0.3. tial movement for the three experimental systems we men-
The coincidence of correlation behavior in these experitioned above.
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ll. FRACTAL ANALYSIS OF TIME SERIES integral and defines the increments of a discrete fractional

A. Fractional Brownian motion Brown motion with 0<H<1 as

By definition, an important property of fractal times series nt i
is statistical self-similarity. One of the simplest example is B (t)—By(t—1)= ————~— 2 K(t— _)n1/2§i ,
ordinary Brownian motion in one dimension. Consider a par- F(H+1/2) i=itwm) n

ticle in fluid with massm is driven by uncorrelated random 6)
force #'(t), while a viscous force depending on velocity is

also present. We have the Langevin equation. where the kerneK is defined by

mX=—yx+cny'(t), 1) [t o<t'<t
K(t—t ): (t_tr)H71/2_(_tr)Hfl/2 t'<0 (7)
where — yx is the viscous force and is the random force

amplitude. The above equation could also be written and {& is a set of Gaussian random variables with unit

variance and zero mean. Another method was introduced by
Voss[9], which he called successive random addition. The
starting point is a sequence of positions
X(ty),X(t5),....X(ty) attimestq, ...ty . We chooséN=3 at
t;=0, 3, and 1, and set positions equal to zero. Next, the
positions X(t;), X(t,), and X(t3) are given random addi-
3) tions chosen from a Gaussian distribution with zero mean
and unit variance. The midpoints of time intervals become
gdditional times at which the positions are estimated by in-
terpolation. Then all positions are given a random addition
with zero mean and a reduced variangg=32". After n
(X(1)—x(tg))=0, ([x(t)—X(to)]?)=2D|t—t, (4)  applications of this algorithm we defined the position of the
fractional Brownian motion at (+2") times. The positions
for any two timest andt,, whereD is called the diffusion ~are obtained by the interpolation and random addition pro-
coefficient. These relations imply that the process is statistic€ss. The variance of the addition in thth generation of
cally self-similar. That is, the shape of the motion over timesthis process isrz= 3"". Then, introducing a transformation
interval t;—t, is proportional to that over intervah—t,.  On timet—t’=2"t and on positiorX— X’ =22""X, we ob-
The generalization of the process assumes that the variant®n a time series of fractional Brownian motion tpfrom 0

x=—x/7+cy(t), (2
where r=m/vy is called the relaxation time andy(t)

=g’ (t)/m. If the mass of a particle is very small, such that
the relaxation time goes to zero, Ed) should be written as

x=cgy'(t)/y.

In this case, the average and the variance of the particl
positionx(t) satisfy the relations

satisfies the following relation witht —t,|: to 2"+ 1.
The second method is much more efficient for getting a
([X(t) = Xx(to) 12~ t—1to| 2", (5) long fractional Brownian motion time series. Thus, in this

paper, most of the simulations used the series created by the
which defines a fractional Brownian motidé]. H is the  second method.
Hurst coefficient which satisfies <OH<<1. The ordinary
Brownian motion corresponds to the special cébe 3, B. Rescaled range analysis
where the values of the time series are uncorrelated with
each other. Whem # 3, the process is properly fractional
and has an infinitely long-run correlation. More specifically, X ! i :
when H<1, an increasing trend in the past implies a de- That method is well sum_ed for st_udylng the co_rrelatlon of
creasing trend in the future, and a decreasing trend in the pagctal time series. Consider an increment sefie$ of a

implies an increasing trend in the future. Such a correlatioriractional Brownian motion. We divide it inth(T) adjacent
is antipersistent. WheR >1, we have a persistent correla- S€9Ments, each af points. To perform the rescaled range

tion. In this case, an increasing trend in the past implies aRnalysis requires that we compute a quantity caRes for
increase trend in the future, Conversely a decreasing trend f2CNT- For eliminating possible trend influence, the mean of
the past implies, on the average, a continued decrease in tiae nth segment of lengtfi is first computed:
future. nT

Many people believe that the fractal time series can be (X)p 1= E > X | )
analyzed using a framework of fractional Brownian motion, " T
or at least the methods applied to fractional Brownian motion
could also be used to characterize some key properties dthe standard deviatio®, 1 of thenth segment of lengtfi is
fractal time series. To develop the tool of analyzing frac-defined as
tional Brownian motion, the first step is to implement the

In 1951, Hurst introduced rescaled range analysis to study
time correlations in annual discharges of the Nile Rij].

fractional Brownian motion with a computer. 1 nT 12
Two computer simulation methods are generally used to Sh1= (?> > (Xi—(X)nm)?| . 9)
generate a fractional Brownian motion. One was developed i=(n-1T+1

by Mandelbrot and Wallig8], which divides each integer
time step inton steps for the purpose of approximating the For each point in the time series, we compute
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1.0 The important point is that the analysis directly considers the
R variance quantity, which is one of the most important prop-
O.Bﬁ 5;’5'; erties in the stochastic process and connected with many
06 ] v other physical measurables. Whatever the accuracy of the
. . 7 estimatedH is, the dependence of the variance on the time
H 0.4 - kﬁﬁ*‘ prd interval provides important information about the process.
o o-e«a’”%
0.2 + ),::fv"ﬁ D. Zero-crossing analysis
0.0 gﬁ _ . . Generally speaking, the time serigs,} from experiment
00 02 04 06 0.8 1.0 are some scalar observatlg=h(Y,), in which Y, are un-

H derlying high-dimensional variables. So it is important to
introduce methods which directly extract the information of
fractal properties from time series. Hereafter we develop a
method that uses the zero-crossing property of a fractional
Brownian motion.

According to Ref[11], the distributionP(T) of the first
return timeT for a fraction Brownian motion satisfies a
power law

FIG. 1. Estimated Hurst coefficientd’ with rescaled range
analysis method(A), variance analysis metho¢+), and zero-
crossing analysis methdd> ) for fractional Brownian motion time
series created with successive random addition method for glven

|
Yint= 20 (Xk=(X)n,7) (10
- P(T)~TH2, (14)
for (n—1)T+1<i=<nT. The rangeR, 1 in thenth segment . - , ) ,
is then computed by subtracting the least valug;gf from whgreH is the Hurst coefficient. The first return time is
the greatest value of; , r. We divide the range by the stan- defined by the event
dard deviation to determine the rescaled range, and define an

average rescaled range X(0)=X(T)=xp, X(t)<xXo for O<t<T
N(T) or, symmetrically,
(RIST=Rey & Ron/ (S (@ X(0)=X(T)=xp, X()>x, for 0<t<T

We calculate the rescaled ranges for different time duratiorf e discrete versions of the above event are
T, and the logarithm of R/S) is plotted versus the loga-

rithm of T. The slope of this plot i$1, the Hurst coefficient. X(0)=Xo, X(1)<Xo, X(2)<Xo,--,
To test the method and our computer program quantita- X(T)<x, and X(T+1)=X,

tively, we first generated some time series of fractional
Brownian motion with a givenH by the kernel integral or
method and by the successive random addition method, then
computed the Hurst coefficients and compared them with the X(0)=Xqg, X(1)>Xy, X(2)>Xg,...,
predefined value. The result is shown in Fig. 1. For the res-

X(MT)>x, and X(T+1)<Xq.

caled range analysis, the Hurst coefficient is overestimated

whenH<0.7, and underestimated whéi>0.7. By the embedding theorem of a dynamical system, we can

derive that the distribution of zero crossing is invariant for a
generic scalar functioh.

In the variance analysis method we directly calculate the Some details of the above analysis should be considered
variance of increment®/(t—t,), and determine how the when we proceed to use the zero-crossing analysis. The first
variance diverges with time. Consider a time series of fractais that the finite length of the time series may cause the
Brownian motionX(t), the variance of increments is given statistics of the long return times to be characterized with
by low accuracy. The second is that a power law is established

on a continuous motion. The discrete sampling may miss a
V(t—tg) = ([X(t) = X(to) = (X(t) = X(t0))]?) lot of return events. It will affect the statistics especially for
—([X(0) — X(t) ) — (X() — X(t))2,  (12) short return times. Hence only the statistics for a medium

which by definition diverges with time as

C. Variance analysis

range of return times is reliable. More specifically, if the

sample length ifN, the statistics of the return times between

10 andN/10 are thought to be the most reliable.

(13) Our numerical test results on the fractional Brownian mo-

tion with givenH are shown in Fig. 1. The length of the time

Numerical results show the Hurst coefficients determinedseries is 8192. We measured the slapef the distribution

by this method are the closest to the predefiredFig. 1). on a log-log plot betweeit =10 and 1000. The Hurst coef-

However, since our testing sequences are much more accfieient measured id+ 2. The values estimated fét by this

rately fractal than real data, some unexpected influences magethod were less accurate than those determined by the

be introduced when we analyze the real experimental datather methods. The main reason is that the length of the time

V(t—tg)~|t—to|?".
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series is too short. We also analyzed time series of lengths upterval we have(0.02 9, decrease to around O at a time
to 32 769. For this longer time series, the estimated values bipterval of around 5 s. Different from the result of a rescaled
zero-crossing analysis are better than ones given by the resange analysisH is 0.34 for the time interval is 1 s. The
caled range analysis, but worse than ones given by the variransition point from persistent to antipersistent correlation is
ance analysis. The values computed from these three methbout 0.45 s, which is about one decade smaller than the one
ods underestimate the value Bf whenH is near 1. This in the rescaled range analysis. The effective analyzing inter-
error is reduced for the variance analysis and the zeroval range for zero-crossing analysis is 0.1-10 s. The compu-
crossing analysis as the length of the time series increasedation result shows the values df are an average 1 for time
The results in Fig. 1 show the comparison of the differentinterval from 0.1 6 1 s and an average 0.4 for a time interval
methods. The further evaluations of the methods are imporfrom 1 to 10 s. The transition point is around 1 s.
tant and complicateff12]. Here we want to note that, since ~ We also did the same analyses on other data from Churilla
our test sequences are accurate fractional Brownian motionst al's experiment, and the data from Treffner and Kelso's
we are not certain that we would find the same results wheexperimen{3]. A similar behavior was observed. The abso-
applying these methods to real experimental data. We thinlute value ofH fluctuated while the feature of a transition
that each of these methods may provide a different point ofrom persistent to antipersistent correlation remained. The
view on the fractal time series. In the following, we will use transition point obtained from the variance analysis was one
all three methods to analyze the time series and comparmtecade smaller than the one obtained from the result of the
them with the simulating results from the models. Here werescaled range analysis.
would like to note that the zero-crossing analysis needs rela-
tively longer time series to ensure the reliability of its statis-
tics. Although the zero-crossing analysis is invariant under a IV. MODELS
coordinate transformation, we still use it as a reference tool
while the other two methods are more prominent in our dis-

cussion, since the experimental time series are generally rela- The motivation of our work is to find some simple dy-
tively short. namical models which could illustrate the transition from

persistent to antipersistent correlation. There are several pos-
sible ways to implement the transition. We first considered a
Il. TRANSITION FROM PERSISTENT constrained persistent random walk model. Because the bio-
TO ANTIPERSISTENT logical system is naturally a bounded system, the time series
we measured from a biological system carries this property,
&nd we could introduce limitationX .« and X, in our

A. Bounded correlated random walk

Fractal analysis now has been applied to characteriz

many time series f_ro_m biological systems. It is found tha; 9model. When the particle moves to the boundary of limita-
unique Hurst coefficient could not be defined for the entlretion it is bounced back as if there is a mirror at the bound-

process. Generally, for the short time interval, the slopes ."?ary. Our first model considered a fractional Brownian motion

different analyses all suggest that the Hurst coefficient iI$vith mirrors atX= — M/2 andM/2. In practice, we first cre-

larger than 0.5, while, for the longer time interval, the SIOpesated a time series of a free fractional Brownian motion, and

suggest that the coefficient is smaller than 0.5. A Hurst CO%hen introduced a mirror transformation
efficient larger than 0.5 means a persistent behavior, whic

carries out a superdiffusion which is faster than a normal M—X(1), X(H)>M/2
random walk; and, conversely, a Hurst coefficient smaller X(t)—X' (1) ={ X(1), —MR2<X(t)<M/2
than 0.5 means a antipersistent behavior, which carries out
o o —M-=X(t), X((t)<-—M/2.
an abnormal diffusion which is slower than a normal random (15)

walk. Since it is a common property of many biological sys-
tems, we think the mechanism of the transition from persis-
tent to antipersistent correlation could be derived from théNe did the transformations on the time series many times
property of a dynamical system. until all values ofX(t) were between- M/2 andM/2. Figure

First, we would like to detail the description of the tran- 3 shows the fractal analysis result for transformed time series
sition by using the analysis methods mentioned in Sec. Il. A®f fractional Brownian motion wittH=0.75 andM = 100.
a typical example, we choose data from Churétaal’s ex- The results do show a transition from persistent to anti-
periment[1], which is a measure of the voltage across thepersistent correlation. The transition point from the variance
cell membrane of humai-lymphocyte cell line by the analysis is also one decade smaller than the ones from the
whole cell patch clamp technique. The time series consistetbscaled range analysis. However, the transitions are sharper
of 8192 points sampled at 100 points/s. Since the slope vathan those found from the experiment. After the transition,
ies for different time intervals, we calculated the local slopeinstead of the value ofi about 0.2 in the results of fractal
and converted it to the corresponding Hurst coefficient for analysis on experimental data, the rescaled range and the
certain time interval. The result is shown in Fig. 2. increment variance of the model’'s output correspondito

By rescaled range analysis, for a time interval smaller=0.
than 1 s, the values &1 are between 0.65 and 0.90. For time  The transition point from persistent to antipersistent could
intervals larger than 10 s, the valuestbfare around 0.2. The be derived by the following argument: When the particle
transition point, at which the value ¢ hits 0.5, is about does not hit the boundaries, the motion of the particle main-
4.2 s. Variance analysis presents a slightly different picturetains a persistent behavior. The free-moving time between
The values o, beginning from 0.83 for the shortest time the boundaries determines the magnitude of the transition
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FIG. 2. Results of fractal analyses on the time series of €aiseChurillaet al’s experimen{1]. (a) The rescaled rang&/S vs the time
intervalt in a double logarithm coordinaté) The coefficienH of the local slope ir{a) vs the time intervat. (c) The variance of increment
V(t) vs the time intervat in a double logarithm coordinatéd) The coefficientH derived from the local slope ift) vs the time intervat.
(e) Distribution P(t) of the first return time in a double logarithm coordinatéf) The coefficientH derived from the local slope ife) vs
the time intervalt which is between 0.1 and 10 s.

point. Suppose the diffusion coefficient of a primary randomexperiment. We believe that the reason for this difference
walk is D; we will have a transition point at approximately between experiment and our mirror approximated con-
strained model is that the mirror's bouncing back virtually
introduces an infinitely strong force at the boundary, which
does not really exist. To overcome the disagreement between
given H. Figure 4 shows the numerical result of the transi-M0d€l and experiment, one obvious way is to consider a
tion point for differentM/D when the Hurst coefficient is _softer constramed force, e.g., an.elast|c recovering force, act-
0.75. The slopes of both lines ate For the rescaled range N9 ON the parncle associated with the. stochgsnc forcg.
analysis, the value of,, is about 0.55, while, for the vari- To do this, we need to solve the differential equation of
ance analysisC,, is 0.09. We also calcula®C,, for differ- ~ Motion with a stochastic force which is represented by frac-
ent Hurst coefficients. It seen®,, is independent oH in  tional Brownian noise. We put fractal Brownian noigen
this case. Eqg. (3) instead of ordinary random noise. When we solve
The mirror approximation shows that introducing a con-that equation numerically, we use the increment of a frac-
straint on random motion does cause an antipersistent corrional Brownian motion instead of a random number chosen
lation, as we expected. However, the antipersistent correldrom a Gaussian distribution for each integral step. The out-
tion in this model is stronger than we have seen in theput of x will be a fractional Brownian motion with same

Te=Cp(M/D)*™, (16)

whereH is the Hurst coefficient, an@,, is a constant for a
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FIG. 4. The transition timel. by the rescaled range analysis

(©) and the variance analysia) for differentM/D in model(15).
HereH=0.75. The equations of the straight lines in figure &ge
=0.55(M/D)*3 and T,=0.09(M/D)*3,

Hurst coefficient. Next we can add in a elastic recover force

—kx in Eq. (3), to obtain
x=—kx/y+cé&' (t)/y. (17

The random force’ (t) is a fractional Brownian noise.

More specifically, we used a first-order integral method to
solve Eq.(17). The key point is assuming that the output of

equationx= £’ (t) is a perfect fractional Brownian motion,
then

t+h

& (t)ydt=h"y, (18)

whereY is chosen progressively from a series of the incre-
ments of a fractional Brownian motion with unit variance

and zero mean. Thus we have
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FIG. 5. Results of fractal analyses on the time series of mddglfor H=0.75,k/y=0.06, andc/ y=1. (a) The rescaled range/S vs
the time intervat in a double logarithm coordinaté) The coefficientH derived from the local slope ifa) vs the time intervat. (c) The
variance of incremen¥(t) vs the time intervat in a double logarithm coordinaté&d) The coefficientH derived from the local slope ift)
vs the time intervat. (e) Distribution P(t) of the first return time in a double logarithm coordinaté.) The coefficientH derived from the
local slope in(e) vs the time intervat, which is between 10 and 1000 unit times.

X(t+ 8t) —x(t)= —kxdt/ y+c(st)"Y/ y. (19 sharper than that in the result on experimental data with the
variance analysis.
Another conclusion from the assumption tixat &' (t) is

The result of the fractal analysis for output time seriesthat for the output, a perfect fractional Brownian motion,
from Eq.(17) is shown in Fig. 5. The Hurst coefficient of the ynder the transformation—t’ =at, the random force term
fractional Brownian noise is chosen to be 0.75. The ViSCOU% Statistica”y transformed undef’(t)ﬁg’(t’): g’(at)
coefficienty is 1, the elastic parametéris 0.06, and the =gH~1¢£'(t). This result is important when we discuss the
random force amplitude is 1. transition point of model17). Under the transformations

The rescaled range analysis of this process presents gl-,t’ = yk~1t and x—x'=cy" 1k Hx, Eq. (17) is scaled
most the same behavior as that of the experiment. For long, 5 equation without parameters. That implies a statistical

time intervals, the Hurst coefficient goes around 0.3. Thesjmilarity among the systems with different parameters, and
only disagreement between the results of the experiment angle transition poinf, satisfies

the model comes from the variance analysis. The transition

from persistent to antipersistent correlation seems still to be T.=Cev/k, (20
sharper than the one we have seen in results on experiment

data. We also tried a softer force, i.&5=—k|x|¥2 The  whereC,is a constant for a giveH. The numerical result of
results are not qualitatively different. The transition is still the transition points is shown in Fig. 6. In Fig(af we
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1000 1000 X(t+ ot) —x(t)=x(t) ot,
100-\ 100—/ X(t+ 8t) —x(t)=—x(t) 8t/ r+c(st) Y. (22
\ 10,// The fractal analysis result of the output time series wHen
=0.25,7=10 andc=1 is shown in Fig. 7.

&~
&~

10 5

1L . B This result seems to be the most similar to that of experi-

0.01 Y 01 05 06 0-7H0-8 09 10 mental data. The transition in the variance analysis is as
smooth as we have seen in experiment. This suggests that the

(a) (b) persistent correlations in experiment are provided by some

kind of inertial movements.
FIG. 6. (a) The transition timeT; by the rescaled range analysis  Now we consider the relation between the transition point
(©) and the variance analysis) for differentk/y in model(17)  and system parameter in our model. The transformation
whenH=0.75. The equations of the straight lines in the figure are; ./ =t andx—x’=c7"* could scale out all parameters

Tc=7.3k andT=0.8k. (b) The transition timeT; by the rescaled  j, ¢ (21). Hence the statistical similar property implies that
range analysi$< ) and the variance analysia) for differentH in we have

model (17) whenk/y=0.06. The equations of the straight lines in
figure areT =73 4H and T =042 28, T.=Cr, (23)

calculate the transition points of mod for different whereC,; is a constant for a giveH. The numerical result of
b 47 transition point for differenk andH=0.25 is shown in Fig.

k/vy, while the Hurst coefficient of the fractional Brownian 8(a). The slopes of the line in the figure are bothGi~36

noise is 0.75. The slopes of the line in the figure are botf}or the result of the rescaled range analysis, Gre 3.5 for
. il 4 .

—1. C, is about 7.3 for the result of rescaled range analysis . .
and about 0.8 for the result of variance analysis. Numeric he result of the variance analysis; also depends on the
: ysIS. urst coefficient in this case. Numerical simulations on dif-

exploration using different Hurst coefficien{$ig. 6(b)] ferent fractional Brownian noises show thag<b™, which
shows thathhe value o€, does depend on the value Bf 50 shown in Fig. @). The equations of the two lines are
with C,xa". The equations of the two lines are exp(1.73exp(5_2+ 2.08H) and exp(2.56-4.15H), which imply thatb

+4H) and exp(0.42 2.6H), respectively, which imply t_hat is about 8 for the rescaled range analysis, and is about 64 for
a is about 55 for the result of rescaled range analysis, anghe variance analysis.

about 13 for the result of variance analysis.
V. CONCLUSIONS AND DISCUSSIONS

B. Fractional Brownian motion with long relaxation time We studied how the pattern seen in the experimental data
Now we consider the problem from another side. We aS_of blologlcal systems, that is persistent at short t|mel|ntervals
nd antipersistent at long time intervals, could arise from

sume _the und_erlylng_ Process 1S an ant|per5|_stent fraction ynamical systems. We find that the pattern in the data could
Browman.motlon, W.h”e other ph.yS|caI prppe_mes_of the SYS"he due to eithefl) a persistent correlated random wald (
tem contribute persistent behavior for brief time intervals. > 1) that is bounded by a sharp threshold or a softer force at

T_he simp[est considerat.ion is th.e ingrtial _movement of thqong times H<1), or (2) an antipersistent correlated walk at
particle. Unlike the Brownian particle in fluid, the effective long time intervals K <2) strongly driven by inertial term
mass in a biological system may not be ignored in our ob H>1) at short times.

servation time scale. This means that the relaxation time of considering that time series in real systems cannot reach
the inertial movement, which equats/y, is comparable infinity and are generally constrained in some definite range,
with the observation time scale, and thus the inertial movethe bounded walk model is quite reasonable. Numerical
ment will be observed in the biological experiment. Inertiasimulation verifies that the bounded walk presents an anti-
always tries to keep the particle moving in the same direcpersistent correlation for the long time intervals. However, a
tion, or, in other words, the inertial movement is a persistentletailed comparison of our fractal analysis between this
movement. Thus we can expect that a persistent correlatiosimple model and the experimental data shows that there are
could exist, at least when the time interval is smaller than thesome differences in transition behavior. For the bounded
relaxation time of the inertial movement. To supply the de-walk with a mirror approximation, the antipersistent correla-
tail, we still need numerical simulations of the equation oftion is stronger than what we have seen in experiment. The
motion. In this case, the stochastic differential equatiorvalue ofH is too low (~0), for models with an elastical
should derive from the Langevin equation. Changing the rantecover force and an even softer force|§|"/). The transi-
dom forcen(t) by fractional Brownian noisé(t) in Eq (2)7 tion from |arQEH to low H is not as smooth at present in the
we obtain variance analysis of the data. We also numerically investi-
_ gated a model which considers inertial force and elastical
X=—X/T+Cc&(t). (2)  recover force simultaneously. We also are struck by the fact
that the transition from persistent to antipersistent correlation
is quicker than we expected. We think that the constrained
We apply a first-order integral method, similar to that phenomena in biological systems may not be illustrated by
used in Sec. Il to solve the equation numerically: any form of recovering force. A possible explanation is that
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FIG. 7. Results of fractal analyses on the time series of m@iglfor H=0.25,7=10, andc=1. (a) The rescaled rang®/S vs the time
intervalt in a double logarithm coordinatéb) The coefficientH derived from the local slope ita) vs the time intervat. (c) The variance
of incrementV(t) vs the time intervat in a double logarithm coordinatéd) The coefficienH derived from the local slope it) vs the time
intervalt. (e) Distribution P(t) of the first return time in a double logarithm coordinaté,) The coefficientH derived from the local slope
in (e) vs the time intervat, which is between 10 and 1000 unit times.

. . . . . 10000 1000
since there exist many meta steady states in biological sys-
tems, the walk is an analogy of a random walk in a random 10001
environment. Sina[13] found that a random environment T, T
actually constrains the random walk. For the particular ~ %1 ¢ 1004
model he discussed it is found that insteps the particle 101
cannot go farther than (In)2. This result corresponds to that
the slope pr/S is 2/Inn. Fpr n_>55, thg corre_lation.be- T o 1050 01 02 03 04 o5
comes antipersistent. We will discuss this consideration fur- 1 H
ther in a future pap€rl4].

To compare the fractal analysis result between model and @ ®

experiment, the value of the transition point is the most im- £\ g_ (a) The transition timeT by the rescaled range analysis
portant quantity when we discuss the transition from antiper; ¢y and the variance analysi) for different = in model (21)
sistent correlation to persistent correlation. The critical reawhenH=0.25. The equations of the straight lines in figure Bge
son is that the value of the transition point is strongly =36; and T,=3.5r. (b) The transition timeT, by the rescaled
connected with the physical parameters, as we discussed ifinge analysi$< ) and the variance analysid) for differentH in
Sec. IV. We derived that the transition point for the modelmodel(21) whenr=10. The equations of the straight lines in figure
considering the inertial movement depends linearly on thereT =e>2"20# and T =256+ 413,
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relaxation timer. For systems similar to Churillet al's  there are two interesting questions waiting for answers. The
experiment, it is found that the time scale for changes ofirst one is why the transition points are different. Our nu-
voltage in the cell is around 100 ni45]. We assume this merical results show the transition point in a rescaled range
time scale is of the same magnitude as the relaxation time afnalysis are always 6—14 times larger than one we obtained
the process. Since the transition point from a variance analyin a variance analysis. The second question concerns the de-
sis is about 3.5 and that from a rescaled range analysis ispendence orH of C, and C;, which is connected with a
about 36, the predicted transition points are consistent withspecific model. It includes why it is an exponential depen-
what we found in Sec. lll. The postural sway system anddence, and why andb in our two models show opposite
Treffner's system are relatively more complicated. We astrends on different transition points as a result of variance
sume the human reaction time is the relaxation time of thesanalysis and rescaled range analysis, recalling ahiat the
two systems, such that the transition point as a result ofariance analysis is four times larger than it is in the rescaled
variance analysis should be around 0.8 s, which is in agreeange analysis, whilb in the rescaled range analysis is eight
ment with the experiment in magnitude. Hence we concludeimes larger tham in the variance analysis. For the model of
that persistent correlations in experiment are due to the ineffractional Brownian motion with elastic recovery fordé,is
tial movement. considered to be larger than 0.5, while for the model of frac-
Another important phenomenon we found in our work istional Brownian with inertial forceH is supposed to be
that, when we employ different fractal analysis methods orsmaller than 0.5. The difference in the transition point in
the same time series, the transition points from the persistendifferent fractal analysis methods will be the smallest when
correlation to the antipersistent correlation are different. Thigq=0.5.
implies that different methods present different results on
c_orrelatlon, and most I|I_<ely reveal dlfferer_1t kinds of (_:orrela- ACKNOWLEDGMENTS
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